Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Nutrients ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542816

RESUMO

The meat derived from mammals such as cows, sheep, and pigs is commonly referred to as red meat. Recent studies have shown that consuming red meat can activate the immune system, produce antibodies, and subsequently develop into tumors and cancer. This is due to the presence of a potential carcinogenic compound in red meat called N-ethanol neuraminic acid (Neu5Gc). Neu5Gc is a common sialic monosaccharide in mammals, synthesized from N-acetylneuraminic acid (Neu5Ac) in the body and typically present in most mammals. However, due to the lack of the CMAH gene encoding the cytidine 5'-monophosphate Neu5Ac hydroxylase, humans are unable to synthesize Neu5Gc. Compared to primates such as mice or chimpanzees, the specific loss of Neu5Gc expression in humans is attributed to fixed genome mutations in CMAH. Although Neu5Gc cannot be produced, it can be introduced from specific dietary sources such as red meat and milk, so it is necessary to use mice or chimpanzees that knock out the CMAH gene instead of humans as experimental models. Further research has shown that early pregnancy factor (EPF) has the ability to regulate CD4+T cell-dependent immune responses. In this study, we established a simulated human animal model using C57/BL6 mice with CMAH gene knockout and analyzed the inhibitory effect of EPF on red meat Neu5Gc-induced CMAH-/- C57/BL6 mouse antibody production and chronic inflammation development. The results showed that the intervention of EPF reduced slow weight gain and shortened colon length in mice. In addition, EPF treatment significantly reduced the levels of anti Neu5Gc antibodies in the body, as well as the inflammatory factors IL-6 and IL-1ß, TNF-α and the activity of MPO. In addition, it also alleviated damage to liver and intestinal tissues and reduced the content of CD4 cells and the expression of B cell activation molecules CD80 and CD86 in mice. In summary, EPF effectively inhibited Neu5Gc-induced antibody production, reduced inflammation levels in mice, and alleviated Neu5Gc-induced inflammation. This will provide a new re-search concept and potential approach for developing immunosuppressants to address safety issues related to long-term consumption of red meat.


Assuntos
Chaperonina 10 , Neoplasias , Proteínas da Gravidez , Carne Vermelha , Fatores Supressores Imunológicos , Feminino , Animais , Humanos , Camundongos , Bovinos , Suínos , Ovinos , Pan troglodytes , Formação de Anticorpos , Primatas , Inflamação , Mamíferos
2.
Molecules ; 29(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542909

RESUMO

N-glycolylneuraminic acid (Neu5Gc), a sialic acid predominantly found in the non-neurohumoral fluids of hind-mouthed animals, is incapable of synthesizing Neu5Gc due to a deletion in the CMAH exon of the gene encoding human CMP-Neu5Gc hydroxylase. But consumption of animal-derived foods that contain Neu5Gc, such as red meat, can instigate an immune response in humans, as Neu5Gc is recognized as a foreign substance by the human immune system. This recognition leads to the production of anti-Neu5Gc antibodies, subsequently resulting in chronic inflammation. When Neu5Gc is consumed excessively or frequently, it may contribute to the development of heart disease and cancer. This makes Neu5Gc, an endogenous pathogenic factor derived from red meat, a new hot topic in red meat safety research. In this study, aptamers obtained by the magnetic bead SELEX technique were subjected to homology and secondary structure prediction analysis as well as affinity determination. The result indicated that the aptamer 2B.N2A9 exhibited a robust binding affinity, with an affinity constant (Ka) of 1.87 × 108 L/mol. This aptamer demonstrated optimal binding specificity within a pH range of 5.4 to 7.4. Molecular docking analysis further revealed that aptamer 2B.N2A9 formed stable binding interactions with the target Neu5Gc at specific sites, namely G-14, C-15, G-13, G-58, G-60, and C-59. An Enzyme-Linked Oligonucleotide Sorbent Assay (ELOSA) methodology was established to detect the endogenous pathogenic factor Neu5Gc present in red meat. This method demonstrated a limit of detection (LOD) of 0.71 ng/mL, along with an average recovery rate of 92.23%. The aptamer obtained in this study exhibited favorable binding properties to Neu5Gc. The assay was relatively convenient and demonstrated good sensitivity. Further investigation into the distribution of Neu5Gc in various red meats is of public health significance and scientific potential. A practical detection method should be provided to guide red meat diets and ensure the nutrition and safety of meat products.


Assuntos
Ácido N-Acetilneuramínico , Carne Vermelha , Animais , Humanos , Simulação de Acoplamento Molecular , Inflamação , Oligonucleotídeos
3.
J Transl Med ; 22(1): 308, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528541

RESUMO

BACKGROUND: Ulcerative colitisis (UC) classified as a form of inflammatory bowel diseases (IBD) characterized by chronic, nonspecific, and recurrent symptoms with a poor prognosis. Common clinical manifestations of UC include diarrhea, fecal bleeding, and abdominal pain. Even though anti-inflammatory drugs can help alleviate symptoms of IBD, their long-term use is limited due to potential side effects. Therefore, alternative approaches for the treatment and prevention of inflammation in UC are crucial. METHODS: This study investigated the synergistic mechanism of Lactobacillus plantarum SC-5 (SC-5) and tyrosol (TY) combination (TS) in murine colitis, specifically exploring their regulatory activity on the dextran sulfate sodium (DSS)-induced inflammatory pathways (NF-κB and MAPK) and key molecular targets (tight junction protein). The effectiveness of 1 week of treatment with SC-5, TY, or TS was evaluated in a DSS-induced colitis mice model by assessing colitis morbidity and colonic mucosal injury (n = 9). To validate these findings, fecal microbiota transplantation (FMT) was performed by inoculating DSS-treated mice with the microbiota of TS-administered mice (n = 9). RESULTS: The results demonstrated that all three treatments effectively reduced colitis morbidity and protected against DSS-induced UC. The combination treatment, TS, exhibited inhibitory effects on the DSS-induced activation of mitogen-activated protein kinase (MAPK) and negatively regulated NF-κB. Furthermore, TS maintained the integrity of the tight junction (TJ) structure by regulating the expression of zona-occludin-1 (ZO-1), Occludin, and Claudin-3 (p < 0.05). Analysis of the intestinal microbiota revealed significant differences, including a decrease in Proteus and an increase in Lactobacillus, Bifidobacterium, and Akkermansia, which supported the protective effect of TS (p < 0.05). An increase in the number of Aspergillus bacteria can cause inflammation in the intestines and lead to the formation of ulcers. Bifidobacterium and Lactobacillus can regulate the micro-ecological balance of the intestinal tract, replenish normal physiological bacteria and inhibit harmful intestinal bacteria, which can alleviate the symptoms of UC. The relative abundance of Akkermansia has been shown to be negatively associated with IBD. The FMT group exhibited alleviated colitis, excellent anti-inflammatory effects, improved colonic barrier integrity, and enrichment of bacteria such as Akkermansia (p < 0.05). These results further supported the gut microbiota-dependent mechanism of TS in ameliorating colonic inflammation. CONCLUSION: In conclusion, the TS demonstrated a remission of colitis and amelioration of colonic inflammation in a gut microbiota-dependent manner. The findings suggest that TS could be a potential natural medicine for the protection of UC health. The above results suggest that TS can be used as a potential therapeutic agent for the clinical regulation of UC.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Lactobacillus plantarum , Álcool Feniletílico/análogos & derivados , Simbióticos , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Azeite de Oliva , NF-kappa B , Ocludina , Modelos Animais de Doenças , Colite/induzido quimicamente , Inflamação/complicações , Inflamação/tratamento farmacológico , Colo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL
4.
Artigo em Inglês | MEDLINE | ID: mdl-38041745

RESUMO

Brucellosis is a zoonosis caused by Brucella, which poses a great threat to human health and animal husbandry. Pathogen surveillance is an important measure to prevent brucellosis, but the traditional method is time-consuming and not suitable for field applications. In this study, a recombinase polymerase amplification-SYBR Green I (RPAS) assay was developed for the rapid and visualized detection of Brucella in the field by targeting BCSP31 gene, a conserved marker. The method was highly specific without any cross-reactivity with other common bacteria and its detection limit was 2.14 × 104 CFU/mL or g of Brucella at 40 °C for 20 min. It obviates the need for costly instrumentation and exhibits robustness towards background interference in serum, meat, and milk samples. In summary, the RPAS assay is a rapid, visually intuitive, and user-friendly detection that is highly suitable for use in resource-limited settings. Its simplicity and ease of use enable swift on-site detection of Brucella, thereby facilitating timely implementation of preventive measures.

5.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37309037

RESUMO

Brucella is the causative agent of brucellosis and can be transmitted to humans through aerosolized particles or contaminated food. Brucella abortus (B. abortus), Brucella melitensis (B. melitensis), and Brucella suis (B. suis) are the most virulent of the brucellae, but the traditional detection methods to distinguish them are time-consuming and require high instrumentation. To obtain epidemiological information on Brucella during livestock slaughter and food contamination, we developed a rapid and sensitive triplex recombinant polymerase amplification (triplex-RPA) assay that can simultaneously detect and differentiate between B. abortus, B. melitensis, and B. suis. Three pairs of primers (B1O7F/B1O7R, B192F/B192R, and B285F/B285R) were designed and screened for the establishment of the triplex-RPA assay. After optimization, the assay can be completed within 20 min at 39°C with good specificity and no cross-reactivity with five common pathogens. The triplex-RPA assay has a DNA sensitivity of 1-10 pg and a minimum detection limit of 2.14 × 104-2.14 × 105 CFU g-1 in B. suis spiked samples. It is a potential tool for the detection of Brucella and can effectively differentiate between B. abortus, B. melitensis, and B. suis S2, making it a useful tool for epidemiological investigations.


Assuntos
Brucella melitensis , Brucella suis , Brucelose , Humanos , Brucella abortus/genética , Brucella suis/genética , Brucella melitensis/genética , Recombinases , Brucelose/diagnóstico , Brucelose/veterinária , Nucleotidiltransferases
6.
Talanta ; 259: 124558, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37088039

RESUMO

Listeria monocytogenes (LM) is an important foodborne pathogen that is associated with a high mortality rate. Currently, there is an urgent need for an inexpensive and rapid assay for the large-scale diagnosis and monitoring of LM. To meet these requirements, we designed a one-step, low-cost platform for the simultaneous amplification and detection of LM based on the CRISPR/Cas12a system with a micro-amplification (named Cas12a-MA). This method utilizes a combination of CRISPR/Cas12a and recombinase polymerase amplification (RPA) in the same vessel to provide a contamination-free platform for rapid nucleic acid detection with high specificity and ultra-sensitivity. In this study, we screened for three specific genes and selected the hly gene in LM as the final target. Our data showed that the number of amplification products plays a crucial role in the function of the CRISPR/Cas12a system. Our method was then further optimized for the specific detection of target DNA on 4.4 CFU/g in 25min. These assays successfully detected LM in spiked pork samples and natural meat samples (pork, beef, and mutton). All results indicate that Cas12a-MA shows great promise for foodborne pathogen detection.


Assuntos
Listeria monocytogenes , Ácidos Nucleicos , Bovinos , Animais , Sistemas CRISPR-Cas , Listeria monocytogenes/genética , Bioensaio , Contaminação de Medicamentos , Recombinases , Técnicas de Amplificação de Ácido Nucleico
7.
Foods ; 12(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36832972

RESUMO

Inflammatory bowel disease (IBD) is a specific immune-associated intestinal disease. At present, the conventional treatment for patients is not ideal. Probiotics are widely used in the treatment of IBD patients due to their ability to restore the function of the intestinal mucosal barrier effectively and safely. Lactiplantibacillus plantarum subsp. plantarum is a kind of probiotic that exists in the intestines of hosts and is considered to have good probiotic properties. In this study, we evaluated the therapeutic effect of Lactiplantibacillus plantarum subsp. plantarum SC-5 (SC-5) on dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice. We estimated the effect of SC-5 on the clinical symptoms of mice through a body weight change, colon length, and DAI score. The inhibitory effects of SC-5 on the levels of cytokine IL-1ß, IL-6, and TNF-α were determined by ELISA. The protein expression levels of NF-κB, MAPK signaling pathway, and the tight junction proteins occludin, claudin-3, and ZO-1 were verified using Western Blot and immunofluorescence. 16S rRNA was used to verify the modulatory effect of SC-5 on the structure of intestinal microbiota in DSS-induced colitis mice. The results showed that SC-5 could alleviate the clinical symptoms of DSS-induced colitis mice, and significantly reduce the expression of pro-inflammatory cytokines in the colon tissue. It also attenuated the inflammatory response by inhibiting the protein expression of NF-κB and MAPK signaling pathways. SC-5 improved the integrity of the intestinal mucosal barrier by strengthening tight junction proteins. In addition, 16S rRNA sequencing demonstrated that SC-5 was effective in restoring intestinal flora balance, as well as in increasing the relative abundance and diversity of beneficial microbiota. These results indicated that SC-5 has the potential to be developed as a new probiotic candidate that prevents or alleviates IBD.

8.
Microbiol Res ; 266: 127222, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36306681

RESUMO

Acinetobacter baumannii is a ubiquitous opportunistic pathogen usually with low virulence. In recent years, reports of increased pathogenicity of A. baumannii in livestock due to the migratory behaviour of wildlife have attracted public health attention. Our previous study reported that an A. baumannii strain isolated from dead chicks, CCGGD201101, showed enhanced pathogenicity, but the mechanism for increased virulence is not understood. Here, to screen potential virulence factors, the proteomes of the isolated strain CCGGD201101 and the standard strain ATCC19606 of A. baumannii were compared, and the possible virulence-enhancing mechanisms were further analysed. The 50 % lethal dose (LD50) values of CCGGD201101 and standard strain ATCC19606 in ICR mice were determined to verify their bacterial toxicity. 2D fluorescence difference gel electrophoresis (2D-DIGE) combined with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) and quantitative real-time PCR (RTqPCR) were applied to screen and identify differentially expressed proteins or genes that may be related to virulence enhancement. Bioinformatics analyses based on proteinprotein interaction (PPI) networks were used to explore the function of potential virulence proteins. The pathogenicity of potential virulence factors was assessed by phylogenetic analyses and an animal infection model. The results showed that the LD50 of CCGGD201101 for mice was 1.186 × 106 CFU/mL, and the virulence was increased by 180.5-fold compared to ATCC19606. Forty-seven protein spots were significantly upregulated for the A. baumannii CCGGD201101 strain (fold change ≥1.5, p < 0.05). In total, 14 upregulated proteins were identified using proteomic analysis, and the mRNA expression levels of these proteins were nearly identical, with few exceptions. According to the PPI network and phylogenetic analyses, the I78 family peptidase inhibitor, 3-oxoacyl-ACP reductase FabG, and glycine zipper were screened as being closely related to the pathogenicity of bacteria. Furthermore, the I78 overexpression strains exhibited higher lethality in mouse infection models, which indicated that the I78 family peptidase inhibitor was a potential new virulence factor to enhance the pathogenicity of the A. baumannii CCGGD201101 strain. The present study helped us to better understand the mechanisms of virulence enhancement and provided a scientific basis for establishing an early warning system for enhanced virulence of A. baumannii from animals.


Assuntos
Acinetobacter baumannii , Camundongos , Animais , Acinetobacter baumannii/genética , Virulência/genética , Proteômica , Filogenia , Camundongos Endogâmicos ICR , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Inibidores de Proteases
9.
Microb Pathog ; 176: 105944, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36526033

RESUMO

Tyrosol is one of the main polyphenol compounds in white wine and extra virgin olive oil (EVOO), which plays an antioxidant and anti-inflammatory role in vitro. In the present study, we investigated the possible anti-inflammatory mechanism of tyrosol in Escherichia coli (ETEC)-induced diarrhea in mice. ICR mice were randomly divided into control group, ETEC group, and ETEC + Tyrosol group with 10 mice in each group. In addition to the control group, a bacterial diarrhea model was induced in mice by continuous administration of 0.2 ml × 109 CFU/ml ETEC. After 7 days, the ETEC + Tyrosol group was given tyrosol (20 mg/kg) once a day by gavage, during which the body weight of mice and the degree of diarrhea were measured daily. On the 15th day, all animals in this experiment were sacrificed, colon tissue was collected, and colon length was recorded. Our results indicate that tyrosol significantly attenuated the extent of ETEC-induced diarrhea, including inhibition of pro-inflammatory cytokine, repair of the intestinal epithelial mechanical barrier, and significant inhibition of NF-κB activation. This finding is helpful for the development and further application of tyrosol in the treatment of diarrhea.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Animais , Camundongos , NF-kappa B , Infecções por Escherichia coli/microbiologia , Camundongos Endogâmicos ICR , Diarreia/microbiologia
10.
Food Res Int ; 162(Pt B): 112040, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461311

RESUMO

Human listeriosis outbreaks are often associated with consumption of contaminated food, especially meat products. To better understand meat contamination of L. monocytogenes, whole genome sequencing(WGS) was performed on all detected isolates to investigate genetic relationships between retail markets and slaughterhouses. 110 and 13 isolates were isolated from 1914 food samples and 67 food and environmental samples, respectively. IIa (51/123,41.5%) and IIc (7/123,5.7%) were detected as the dominant serogroups of 123 L. monocytogenes isolates.Most isolates were penicillin-resistant (22/123,17.9%) in the phenotypic test, and all isolates were also found to be susceptible to ampicillin, meropenem, and vancomycin. All of them harbored virulence-associated genes and premature stop codons (PMSCs) in inlA genes were occurred in 35 strains. 22 multilocus sequence types and 19 clonal complexes were identified with ST9 being most common. This study also showed the prevalence and uniqueness of strains from Jilin, China compared with worldwide epidemic international strains. The findings of this study will contribute to the epidemiological understanding of transmission of L. monocytogenes from production and circulation in the region of northern China.


Assuntos
Listeria monocytogenes , Humanos , Listeria monocytogenes/genética , Virulência/genética , Carne , Resistência Microbiana a Medicamentos , Variação Genética
11.
Foods ; 11(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35885403

RESUMO

Yersinia enterocolitica is a dangerous foodborne human pathogen that mainly causes gastroenteritis. Ideal methods for the detection of pathogens in food should be rapid, sensitive, specific, and cost effective. To this end, novel in vitro nucleic acid identification methods based on clustered, regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) endonuclease have received increasing attention. In this study, a simple, visual, and ultrasensitive method, based on CRISPR/Cas12a with recombinase polymerase amplification (RPA), was developed for the detection of Y. enterocolitica. The results show that a specific attachment invasion locus gene (ail) can be rapidly detected using a CRISPR/Cas12a-RPA-based system. Application of the method to raw pork, which was artificially infected with Y. enterocolitica, achieved an estimated detection limit of 1.7 CFU/mL in less than 45 min, and this was 100 times lower compared with qPCR. The results indicated that the CRISPR/Cas12a-RPA system has good potential for monitoring pathogenic Y. enterocolitica in the chilled meat supply chain.

12.
Curr Cancer Drug Targets ; 22(3): 257-268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34994328

RESUMO

BACKGROUND: Increased CCKBR expression density or frequency has been reported in many neoplasms. OBJECTIVE: We aimed to investigate whether CCKBR drives the growth of gastric cancer (GC) and its potential as a therapeutic target of immunotoxins. METHODS: A lentiviral interference system was used to generate CCKBR-knockdown gastric cancer cells. Cell Counting Kit-8 and clonogenic assays were used to evaluate cell proliferation. Woundhealing and cell invasion assays were performed to evaluate cell mobility. Cell cycle was analyzed by flow cytometry. Tumor growth in vivo was investigated using a heterologous tumor transplantation model in nude mice. In addition, we generated the immunotoxin FQ17P and evaluated the combining capacity and tumor cytotoxicity of FQ17P in vitro. RESULTS: Stable downregulation of CCKBR expression resulted in reduced proliferation, migration and invasion of BGC-823 and SGC-7901 cells. The impact of CCKBR on gastric cancer cells was further verified through CCKBR overexpression studies. Downregulation of CCKBR expression also inhibited the growth of gastric tumors in vivo. Furthermore, FQ17P killed CCKBR-overexpressing GC cells by specifically binding to CCKBR on the tumor cell surface. CONCLUSION: The CCKBR protein drives the growth, migration, and invasion of gastric cancer cells, and it might be a promising target for immunotoxin therapy based on its aberrant expression, functional binding interactions with gastrin, and subsequent internalization.


Assuntos
Imunotoxinas , Receptor de Colecistocinina B , Neoplasias Gástricas , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Xenoenxertos , Humanos , Imunotoxinas/farmacologia , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Invasividade Neoplásica , Receptor de Colecistocinina B/genética , Receptor de Colecistocinina B/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
13.
Reprod Fertil Dev ; 33(14): 772-781, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34748725

RESUMO

Reproductive techniques such as superovulation and in vitro fertilisation (IVF) have been widely used in generating genetically modified animals. The current gold standard for superovulation in mice is using coherent treatments of equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG). An alternative method using inhibin antiserum (IAS) instead of eCG has been recently reported. Here, we evaluate different superovulation strategies in C57BL/6J and B6D2F1 mice. Firstly, we found that using 5-week-old C57BL/6J and 4-week-old B6D2F1 donors could achieve better superovulation outcomes. Then, we compared eCG-hCG, IAS-hCG and eCG-IAS-hCG with different dosages in both mouse strains. Significantly increased numbers of oocytes were obtained by using IAS-hCG and eCG-IAS-hCG methods. However, low fertilisation rates (36.3-38.8%) were observed when natural mating was applied. We then confirmed that IVF could dramatically ameliorate the fertilisation rates up to 89.1%. Finally, we performed CRISPR-Cas9 mediated genome editing targeting Scn11a and Kcnh1 loci, and successfully obtained mutant pups using eCG-hCG and IAS-hCG induced zygotes, which were fertilised by either natural mating or IVF. Our results showed that IAS is a promising superovulation reagent, and the efficiency of genome editing is unlikely to be affected by using IAS-induced zygotes.


Assuntos
Proteína 9 Associada à CRISPR , Edição de Genes/métodos , Superovulação , Animais , Gonadotropina Coriônica/administração & dosagem , Canais de Potássio Éter-A-Go-Go/genética , Feminino , Fertilização In Vitro/métodos , Soros Imunes/administração & dosagem , Inibinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Canal de Sódio Disparado por Voltagem NAV1.9/genética
14.
Anal Chem ; 93(41): 13886-13892, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34623153

RESUMO

Given the great harm of pesticide residues to the environment and public health, exploring ultrasensitive and low-cost methods for their quantitative analysis becomes intensely necessary. Herein, we proposed a double-functionalized gold nanoparticle (AuNP) probe as a signal amplification immunoassay for the detection of acetochlor (ATC), metolachlor, and propisochlor. The AuNP was modified with IgG and fluorophore-labeled duplex DNA by a polyadenine-based freezing method. The quenched fluorescence can be effectively recovered via duplex-specific nuclease (DSN) with excellent cleaving activity. This approach provided limits of detection (LODs) down to 0.03 ng/mL for ATC, 0.10 ng/mL for metolachlor, 0.14 ng/mL for propisochlor, and 0.08 ng/mL for their mixture. The average recoveries of ATC, metolachlor, and propisochlor were 93.0-106.6% from a corn sample, which are in good agreement with the commercial kit (R2 = 0.9995). This "turn-off" fluorescence immunoassay presents considerable potential in the analysis of chloroacetamide herbicide due to its simple process of probe preparing and ultrahigh sensitivity.


Assuntos
Ouro , Nanopartículas Metálicas , Acetamidas , Imunoensaio , Toluidinas
15.
Curr Issues Mol Biol ; 43(3): 1529-1547, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34698109

RESUMO

Melanocortin 1 receptor (MC1R) is thought to be a marker of poor prognosis and a potential target for the treatment of melanoma. Studies have found that MC1R promotes several tumor behaviors, including cell proliferation and differentiation, pigment formation, and genome damage repair. Some single-nucleotide polymorphisms (SNPs) of MC1R are involved in the occurrence and development of melanoma. A few studies have reported a relationship between MC1R and colorectal cancer (CRC). In this research, our objective was to examine MC1R expression and MC1R SNPs and investigate their correlation with the clinicopathological features of human CRC tissues. We evaluated MC1R mRNA expression by performing bioinformatic analyses on human CRC expression datasets. We used Western blotting and RT-qPCR to compare MC1R expression in CRC tissues with that in normal tissues, and MC1R SNPs in CRC tissues were detected by PCR-direct sequencing (DS). The expression of MC1R was significantly decreased in CRC tissues compared with normal tissue, and its expression was negatively associated with P53 expression, MLH1 expression, and PMS2 expression, and high MC1R expression was significantly associated with microsatellite instability (MSI). MC1R SNPs were also associated with the clinicopathological characteristics of CRC; for example, the rs2228479 locus genotype was correlated with Ki67 status, and the rs885479 locus genotype was correlated with age and T stage. In conclusion, MC1R plays a crucial role in the progression of CRC and may be a marker of poor prognosis in CRC.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Regulação Neoplásica da Expressão Gênica , Instabilidade de Microssatélites , Receptor Tipo 1 de Melanocortina/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Humanos , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Estadiamento de Neoplasias , Polimorfismo de Nucleotídeo Único , Prognóstico , Mapeamento de Interação de Proteínas , Receptor Tipo 1 de Melanocortina/metabolismo , Transcriptoma , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fluxo de Trabalho
16.
Front Cell Dev Biol ; 9: 701708, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322488

RESUMO

In the past 30 years, few researches focus on the efficacy of adjuvant against Trichinella spiralis infection. Identifying new, improved vaccine adjuvants for T. spiralis infection are required. ß-glucan are effective and safe as adjuvant for infectious diseases. In this paper, we first observed the adjuvanticity of ß-glucan as adjuvant for defensing helminth T. spiralis in vivo. We showed that IgG and IgE were elevated in the mice immunized with ß-glucan combined with recombinant T. spiralis serine protease inhibitor (rTs-Serpin), which is one of the vaccine candidates. Furthermore, in vitro, the combination of ß-glucan and rTs-Serpin enhanced the maturation of bone marrow dendritic cells (BMDCs) compared to rTs-Serpin alone. We showed that ß-glucan + rTs-Serpin -treated BMDCs secreted higher production of IL-12 and IL-10. Moreover, ß-glucan + rTs-Serpin -treated BMDCs not only promoted the population of CD4+ IFN-γ+ T cells, but also enhanced the population of CD4+ IL-4+ T cells. These findings suggested that ß-glucan, as an adjuvant, have the capacity to protect against T. spiralis infection via activating both Th1 and Th2 immune response.

17.
Mol Pharm ; 18(6): 2285-2297, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33998814

RESUMO

Cholecystokinin-2 receptor (CCK2R) has been proven to be a specific biomarker for colorectal malignancies. Immunotoxins are a valuable class of immunotherapy agents consisting of a targeting element and a bacterial or plant toxin. Previous work demonstrated that targeting CCK2R is a good therapeutic strategy for the treatment of colorectal cancer (CRC). In the present study, we developed a new version of CCK2R-targeting immunotoxin GD9P using a targeted peptide, GD9, as the binding motif and a truncated Pseudomonas exotoxin A (PE38) as the cytokiller. BALB/c nude mice were treated with different doses of GD9P, and pharmacodynamics, pharmacokinetic, and toxicological data were obtained throughout this study. Compared to the parental immunotoxin rCCK8PE38, GD9P exhibited about 1.5-fold yield, higher fluorescence intensity, and increased antitumor activity against human CRC in vitro and in vivo. The IC50 values of GD9P in vitro ranged from 1.61 to 4.55 nM. Pharmacokinetic studies were conducted in mice with a T1/2 of 69.315 min. When tumor-bearing nude mice were treated with GD9P at doses ≥2 mg/kg for five doses, a rapid shrinkage in tumor volume and, in some cases, complete remission was observed. A preliminary safety evaluation demonstrated a good safety profile of GD9P as a Pseudomonas exotoxin A-based immunotherapy. The therapy in combination with oxaliplatin can increase the antitumor efficacy and reduce the toxic side effects caused by chemotherapy. In conclusion, the data support the use of GD9P as a promising immunotherapy targeting CCK2R-expressing colorectal malignancies.


Assuntos
ADP Ribose Transferases/farmacologia , Antineoplásicos/farmacologia , Toxinas Bacterianas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Exotoxinas/farmacologia , Receptor de Colecistocinina B/antagonistas & inibidores , Proteínas Recombinantes de Fusão/farmacologia , Fatores de Virulência/farmacologia , ADP Ribose Transferases/genética , ADP Ribose Transferases/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Toxinas Bacterianas/genética , Toxinas Bacterianas/uso terapêutico , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Exotoxinas/genética , Exotoxinas/uso terapêutico , Humanos , Camundongos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/uso terapêutico , Distribuição Tecidual , Testes de Toxicidade Aguda , Fatores de Virulência/genética , Fatores de Virulência/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Anal Biochem ; 621: 114157, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33705723

RESUMO

Pathogenic Yersinia (Y.) enterocolitica is the primary causative agent of Yersiniosis, with outbreaks in numerous countries around the world, and causes diarrhea and vomiting in animals and humans. Therefore, an instrument-free and convenient nucleic acid visualization method, RPA-SYBR Green I, was established, which combines recombinase polymerase amplification (RPA) with the fluorescent dye SYBR Green I for the detection of the adhesion gene ail in pathogenic Y. enterocolitica. After optimization of a series of conditions such as primer concentration, the detection of pathogenic Y. enterocolitica could be finally completed within about 20 min (from DNA extraction to observation of results) at an isothermal temperature of 39°C. RPA-SYBR Green I had no cross-reactivity with other bacteria and the detection limit was 101 CFU/µL, with sensitivity equal to that of conventional PCR. The method established in this paper and conventional PCR identified a total of 5 spiked samples and 15 meat samples stored in refrigerated, and it was concluded that there was 100% consistency between the two methods. Overall, RPA-SYBR Green I is a visual and facilitate detection assay that can accurately discover pathogenic Y. enterocolitica.


Assuntos
Benzotiazóis/química , Diaminas/química , Fluorometria/métodos , Microbiologia de Alimentos/métodos , Carne/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Quinolinas/química , Yersinia enterocolitica/genética , Proteínas da Membrana Bacteriana Externa/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , Carne/análise , Recombinases/metabolismo , Reprodutibilidade dos Testes , Temperatura , Yersinia enterocolitica/isolamento & purificação
19.
Antonie Van Leeuwenhoek ; 114(5): 527-538, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33710455

RESUMO

A Gram-positive, smooth, sub-transparent, faint yellow,0.5-0.7 µm diameter, rod shaped aerobic or facultative aerobic strain P40-2Twas isolated from livestock farms in Northeast China. Strain P40-2T grew at 25-40 °C (optimum 30-38 °C), and in 0-4% (w/v) NaCl (optimum 0%) in LB medium. Based on 16S rRNA gene sequence analysis, strain P40-2T belongs to the class Cellulomonas and is most closely related to C. denverensis strain W6929, C. pakistanensis strain NCCP-11and C. hominis strain CE40.DNA-DNA hybridization rate of strain P40-2T was 29%, and the ANI with C.denverensisstrainW6929 was 85.33%. The genome is 3437431 bp long with a G + C content of 71.99%. Of the 3177 predicted genes, 3119 were protein-coding genes and 58 were RNA encoding genes. The chemotaxonomic data: menaquinone was MK-9(H4), anteiso-C15: 0, C16:0 and anteiso-C17: 0 were the major cellular fatty acids, and the main cell-wall amino acids were ornithine,alanine, glycine and glutamate. The cell wall peptidogly can sugars included glucose, rhamnose, galactose and mannose. The polar lipid present were DPG, PG, PE, and PIM. On the basis of DNA-DNA relatedness, phylogenetic position, complete genome sequence and physiological characteristics, strain P40-2T can be differentiated from other species of the genus Cellulomonas with validly published names and thus represents a novel species, for which the name Cellulomonas taurus is proposed. The type strain is Cellulomonas taurus P40-2T (= CGMCC No.1.17732T).The acute toxicity test in mice showed that LD50 of strain P40-2T was rather high with 1.5 × 1011 CFU/mouse, which indicated low pathogenicity. Drug susceptibility showed that strainP40-2T was resistant to most antibiotics and only sensitive to six antibiotics. Strain P40-2T contained a variety of hydrolytic enzymes including the ability to hydrolyze cellulose, ß-glucan, chitin, xylan, and casein. Microbial flocculant MBF-P40 for sewage was prepared with strain P40-2T, after strain P40-2T was confirmed that had good flocculation effect. MBF-P40 was used to prepare flocculation rate of 99.40%. MBF-P40 treatmented sewage from eight different sources. Flocculation rate for pig farm wastewater was 96.07%, COD removal rate is 71.05%, ammonia nitrogen removal rate is 18.22%. The result shows that MBF-P40 has a good flocculation effect, and good prospect of development and application for wastewater treatment.


Assuntos
Cellulomonas , Purificação da Água , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Cellulomonas/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Hidrolases , Gado , Camundongos , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suínos , Vitamina K 2
20.
Emerg Microbes Infect ; 10(1): 356-364, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33560938

RESUMO

Listeria monocytogenes is an important foodborne pathogen, and is ubiquitously distributed in the natural environment. Cattle and sheep, as natural hosts, can transmit L. monocytogenes to related meat and dairy products. In this study, the prevalence, distribution, and transmission characteristics of Listeria were analysed by investigating 5214 samples of cattle and sheep in farm and slaughtering environments in China. A low contamination incidence of L. monocytogenes (0.5%, 20/4430) was observed in farm environment, but there was a high contamination incidence in slaughtering environment (9.4%, 74/784). The incidence of L. innocua in cattle and sheep farm and slaughtering environments is more common and significantly higher (9.7%, 508/5214) than that of L. monocytogenes (1.8%, 94/5214). The distinct molecular and genetic characteristics of Listeria by PFGE and MLST indicated that L. monocytogenes and L. innocua were gradually transmitted from the farm and slaughtering environments to end products, such as beef and mutton along the slaughtering chain. The ST7, ST9, ST91, and ST155 found in our study were associated with the human listeriosis cases in China. In addition, the findings of virulence markers (inlC, inlJ, LIPI-3, LIPI-4, and ECIII) concerned with the pathogenesis of human listeriosis and antibiotics resistance of L. monocytogenes in this study implies a potential public health risk. This study fills the gap in the epidemiology of beef cattle and sheep that carry Listeria in farm and slaughtering environments in major cattle and sheep producing areas in China.


Assuntos
Doenças dos Bovinos/microbiologia , Listeria/isolamento & purificação , Listeriose/veterinária , Doenças dos Ovinos/microbiologia , Matadouros/estatística & dados numéricos , Animais , Bovinos , China , Fazendas , Manipulação de Alimentos , Inocuidade dos Alimentos , Listeria/classificação , Listeria/genética , Listeriose/microbiologia , Carne/microbiologia , Prevalência , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...